Модуль усилителя мощности непрерывного режима УМ133-5, в металлопластмассовом корпусе со штырьковыми выводами, предназначен для применения в в возимых радиостанциях и других радиосистемах.

КОРПУС К-2Б

Модуль усилителя мощности УМ133-5

Таблица 1 — Электрические параметры при приемке и поставке

Наименование параметра (режим измерения),	Буквенное	Норма	
единица измерения	обозначение	не менее	не более
Диапазон рабочих частот, МГц	Δf	1,5	520,0
Выходная мощность ($U_{\rm n} = 28 \text{ B}, U_{\rm ynp} = 12,5 \text{ B},$			
$P_{\rm BX} = 20 \text{ MBT}$), BT	$P_{\scriptscriptstyle m BMX}$	5	
Коэффициент усиления по мощности			
$(P_{\text{вх}} = 20 \text{ мВт}, U_{\text{п}} = 28 \text{ B}, U_{\text{упр}} = 12,5 \text{ B}), дБ$	$K_{ m yP}$	24	
Неравномерность коэффициента усиления по			
мощности в диапазоне частот, дБ	$\Delta K_{ m yP}$		±2
Коэффициент стоячей волны по напряжению			
(КСВН) со стороны входа	$K_{ m cTU_{BX}}$		2
Коэффициент полезного действия (КПД)			
$(P_{\text{BX}} = 20 \text{ MBT}, U_{\text{II}} = 28 \text{ B}, U_{\text{ynp}} = 12,5 \text{ B}), \%$	η	20	
Относительный уровень колебаний на второй и			
третьей гармониках основного тона ($P_{\text{вых}} = 5 \text{ Bt}$,			
$U_{\rm II} = 28 \text{ B}, U_{\rm ymp} = 12,5 \text{ B}$):			
– вторая гармоника, дБ	$\alpha_{\text{гарм.2}}$		-20
– третья гармоника, дБ	$\alpha_{\text{гарм.3}}$		-20
Коэффициенты комбинационных составляющих			
третьего и пятого порядков $(P_{\text{вых п.о.}} = 5 \text{ Br},$			
$U_{\rm II} = 28 \; {\rm B}, \; U_{\rm ynp} = 12,5 \; {\rm B}) \; , \; {\rm дБ}$	M_3, M_5		-30
Потребляемый ток по выводу управления			
$(P_{\text{BX}} = 20 \text{ MBT}, U_{\Pi} = 28 \text{ B}, U_{\text{ynp}} = 0\text{-}12\text{,}5 \text{ B}), \text{ MA}$	$I_{ m ynp}$		200

Примечание: 1. По ГОСТ 18604.23-80

Таблица 2 — Предельно допустимые значения электрических параметров в рабочем диапазоне температуры среды

Наименование параметра	Буквенное	Норма	Допустимые
(режим и условия измерения), единица	обозначение		отклонения
измерения			норм испыт.
			режимов
Максимально допустимое постоянное			
напряжение питания, В	$U_{ m mmax}$	30	
Максимально допустимое постоянное			
напряжение управления, В	$U_{упр\ max}$	12,8	
Максимально допустимая ВЧ входная			
мощность, мВт	$P_{ m BX\ max}$	30	
Максимальный КСВН нагрузки при всех			
фазовых углах ($P_{\text{вых}} = 5 \text{ Bt}$ (контролируется			
по входной мощности), $U_{\rm n} = 28 \; {\rm B}$,			
$U_{\rm ynp}$ = 0-12,5 B), не более	$K_{\text{ct.U max}}$	3	
Максимально допустимая температура			
корпуса, °С	$t_{ m k\ max}$	+85	
Минимально допустимая температура			
среды, °С	$t_{ m cp\ min}$	-60	

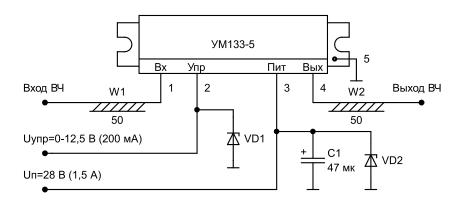


Рисунок 1 — Типовая схема включения модуля УМ133-5

Примечание:

- 1. Емкость встроенного блокировочного конденсатора между выводом управления и шиной нулевого потенциала не превышает $0,15\,$ мк $\Phi.$
- 2. Элементы схемы VD1 и VD2 супрессоры напряжения (TVS Diode) мощностью не менее 600 Вт на напряжение 12 и 30 В соответственно (например SM6T12A и SM6T30A).

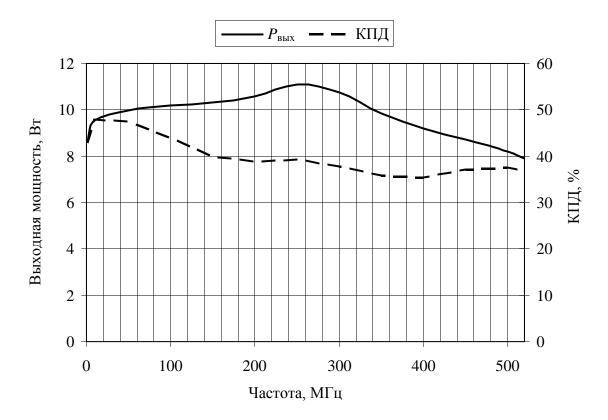


Рисунок 2 — Частотные зависимости выходной мощности и КПД ($P_{\rm BX}\!=\!20~{\rm MBT},\ U_{\rm \Pi}\!=\!28~{\rm B},\ U_{\rm ynp}\!=\!12,5~{\rm B},\ t_{\rm K}\!=\!40~{\rm ^{\circ}C})$

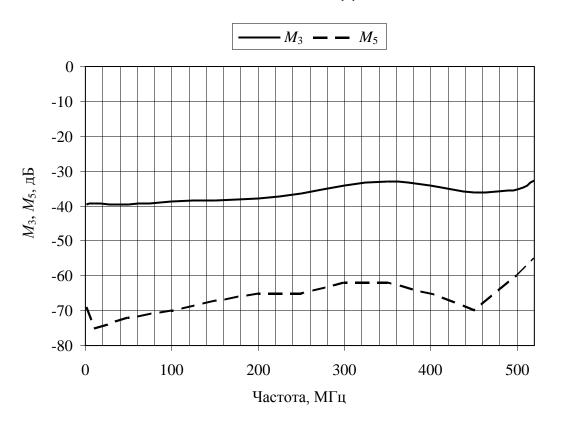


Рисунок 3 — Частотные зависимости коэффициентов комбинационных составляющих третьего M_3 и пятого M_5 порядков ($P_{\text{вых п.о.}} = 5$ Вт, $U_{\text{п}} = 28$ В, $U_{\text{упр}} = 12,5$ В, $t_{\text{к}} = 40$ °C)

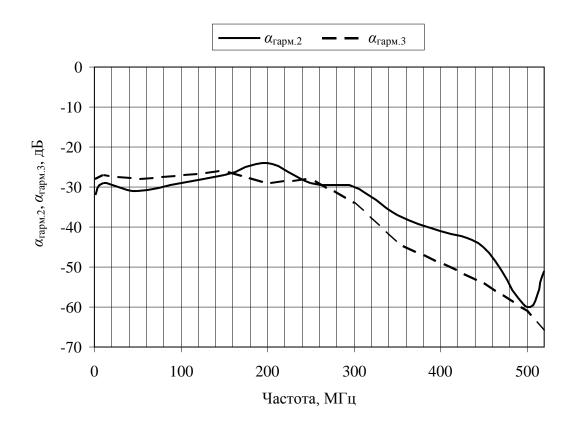


Рисунок 4 — Частотные зависимости относительного уровня колебаний на второй $\alpha_{\text{гарм.2}}$ и третьей $\alpha_{\text{гарм.3}}$ гармониках основного тона ($P_{\text{вых}} = 5 \text{ Bt}$, $U_{\text{п}} = 28 \text{ B}$, $U_{\text{упр}} = 12,5 \text{ B}$, $t_{\text{k}} = 40 \, ^{\circ}\text{C}$)

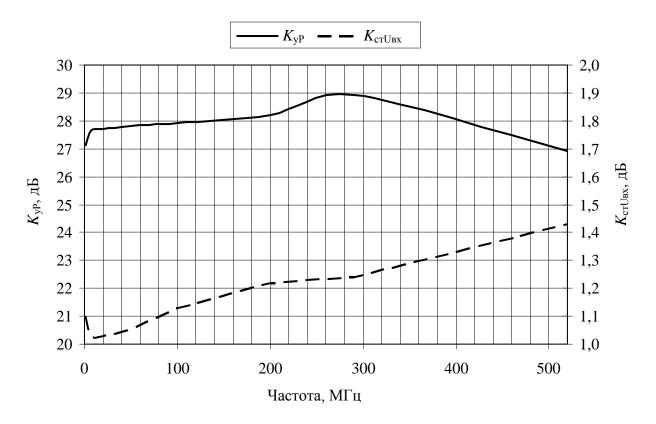


Рисунок 5 — Частотные зависимости $K_{\rm yP}$ и $K_{\rm crUBX}$ ($P_{\rm BX}$ = 1 мВт, $U_{\rm \Pi}$ = 28 В, $U_{\rm ynp}$ = 12,5 В, $t_{\rm K}$ = 40 °C)